Existence of solutions for a fractional Choquard-type equation in $$\mathbb {R}$$ with critical exponential growth

نویسندگان

چکیده

In this paper, we study the following class of fractional Choquard-type equations $$\begin{aligned} (-\Delta )^{1/2}u + u=\Big ( I_\mu *F(u)\Big )f(u), \quad x\in \mathbb {R}, \end{aligned}$$ where $$(-\Delta )^{1/2}$$ denotes 1/2-Laplacian operator, $$I_{\mu }$$ is Riesz potential with $$0<\mu <1$$ , and F primitive function f. We use variational methods minimax estimates to existence solutions when f has critical exponential growth in sense Trudinger–Moser inequality.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of nontrivial weak solutions for a quasilinear Choquard equation

We are concerned with the following quasilinear Choquard equation: [Formula: see text] where [Formula: see text], [Formula: see text] is the p-Laplacian operator, the potential function [Formula: see text] is continuous and [Formula: see text]. Here, [Formula: see text] is the Riesz potential of order [Formula: see text]. We study the existence of weak solutions for the problem above via the mo...

متن کامل

Infinitely many solutions for a class of $p$-biharmonic‎ ‎equation in $mathbb{R}^N$

‎Using variational arguments‎, ‎we prove the existence of infinitely‎ ‎many solutions to a class of $p$-biharmonic equation in‎ ‎$mathbb{R}^N$‎. ‎The existence of‎ ‎nontrivial‎ ‎solution is established under a new‎ ‎set of hypotheses on the potential $V(x)$ and the weight functions‎ ‎$h_1(x)‎, ‎h_2(x)$‎.

متن کامل

Existence of positive solutions for a boundary value problem of a nonlinear fractional differential equation

This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.

متن کامل

infinitely many solutions for a class of $p$-biharmonic‎ ‎equation in $mathbb{r}^n$

‎using variational arguments‎, ‎we prove the existence of infinitely‎ ‎many solutions to a class of $p$-biharmonic equation in‎ ‎$mathbb{r}^n$‎. ‎the existence of‎ ‎nontrivial‎ ‎solution is established under a new‎ ‎set of hypotheses on the potential $v(x)$ and the weight functions‎ ‎$h_1(x)‎, ‎h_2(x)$‎.

متن کامل

Existence of non-trivial solutions for fractional Schrödinger-Poisson systems with subcritical growth

In this paper, we are concerned with the following fractional Schrödinger-Poisson system:    (−∆s)u + u + λφu = µf(u) +|u|p−2|u|, x ∈R3 (−∆t)φ = u2, x ∈R3 where λ,µ are two parameters, s,t ∈ (0,1] ,2t + 4s > 3 ,1 < p ≤ 2∗ s and f : R → R is continuous function. Using some critical point theorems and truncation technique, we obtain the existence and multiplicity of non-trivial solutions with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Zeitschrift für Angewandte Mathematik und Physik

سال: 2021

ISSN: ['1420-9039', '0044-2275']

DOI: https://doi.org/10.1007/s00033-020-01447-w